Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 105, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217979

RESUMO

BACKGROUND: Previously, we isolated a riboflavin-overproducing Ashbya gossypii mutant (MT strain) and discovered some mutations in genes encoding flavoproteins. Here, we analyzed the riboflavin production in the MT strain, in view of flavoproteins, which are localized in the mitochondria. RESULTS: In the MT strain, mitochondrial membrane potential was decreased compared with that in the wild type (WT) strain, resulting in increased reactive oxygen species. Additionally, diphenyleneiodonium (DPI), a universal flavoprotein inhibitor, inhibited riboflavin production in the WT and MT strains at 50 µM, indicating that some flavoproteins may be involved in riboflavin production. The specific activities of NADH and succinate dehydrogenases were significantly reduced in the MT strain, but those of glutathione reductase and acetohydroxyacid synthase were increased by 4.9- and 25-fold, respectively. By contrast, the expression of AgGLR1 gene encoding glutathione reductase was increased by 32-fold in the MT strain. However, that of AgILV2 gene encoding the catalytic subunit of acetohydroxyacid synthase was increased by only 2.1-fold. These results suggest that in the MT strain, acetohydroxyacid synthase, which catalyzes the first reaction of branched-chain amino acid biosynthesis, is vital for riboflavin production. The addition of valine, which is a feedback inhibitor of acetohydroxyacid synthase, to a minimal medium inhibited the growth of the MT strain and its riboflavin production. In addition, the addition of branched-chain amino acids enhanced the growth and riboflavin production in the MT strain. CONCLUSION: The significance of branched-chain amino acids for riboflavin production in A. gossypii is reported and this study opens a novel approach for the effective production of riboflavin in A. gossypii.


Assuntos
Acetolactato Sintase , Eremothecium , Flavoproteínas , Mutação , Riboflavina , Riboflavina/biossíntese , Riboflavina/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Eremothecium/efeitos dos fármacos , Eremothecium/enzimologia , Eremothecium/genética , Eremothecium/crescimento & desenvolvimento , Eremothecium/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia
2.
FEMS Microbiol Lett ; 364(24)2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29121260

RESUMO

The ADP-ribosylation factor (ARF) family of GTPases are highly conserved from yeast to human and regulate vesicle budding. Sec7 domain containing proteins stimulate the guanine nucleotide exchange on Arf proteins, while ARF-GTPase activating proteins stimulate the hydrolysis of GTP. Since vesicle trafficking is important for hyphal growth, we studied the Ashbya gossypii homolog of Saccharomyces cerevisiae ARF3 along with its putative GEF and GTPase-activating protein (GAP) encoded by YEL1 and GTS1, respectively. Deletion of YEL1 had no discernible phenotype and deletion of ARF3 had only a minor defect in vacuolar fusion. In contrast, deletion of GTS1 severely impaired hyphal growth, and mutants showed defects in the maintenance of polarity and the localization of cortical actin patches. The uptake of the lipophilic dye FM4-64 was delayed in gts1 hyphae, indicating a defect in endocytosis. Gts1 has several protein domains, of which the Arf-GAP domain is required for complementation of the gts1 mutant phenotype. GFP-tagged GTS1 under control of its endogenous promoter localized to the plasma membrane but was enriched at hyphal tips and septal sites corresponding to a role in polarized vesicle trafficking. Our results indicate that this ARF-GTPase module plays an important role for filamentous hyphal growth.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Endocitose/genética , Eremothecium/enzimologia , Eremothecium/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento , Fatores de Ribosilação do ADP/genética , Eremothecium/genética , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo
3.
Eukaryot Cell ; 14(6): 593-601, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25862153

RESUMO

Sporulation in Ashbya gossypii is induced by nutrient-limited conditions and leads to the formation of haploid spores. Using RNA-seq, we have determined a gene set induced upon sporulation, which bears considerable overlap with that of Saccharomyces cerevisiae but also contains A. gossypii-specific genes. Addition of cyclic AMP (cAMP) to nutrient-limited media blocks sporulation and represses the induction of sporulation specific genes. Deletion of the protein kinase A (PKA) catalytic subunits encoded by TPK1 and TPK2 showed reduced growth in tpk1 but enhanced growth in the tpk2 strain; however, both mutants sporulated well. Sporulation can be blocked by cAMP in tpk1 but not in tpk2 strains. Similarly, TPK2 acts at a second developmental switch promoting the break in spore dormancy. In S. cerevisiae, PKA phosphorylates and inhibits Msn2/4. The transcript profiles of the tpk1 and msn2/4 mutants were very similar to that of the wild type under sporulation conditions. However, deletion of the single A. gossypii MSN2/4 homolog generated a specific sporulation defect. We identified a set of genes involved in spore wall assembly that was downregulated in the msn2/4 mutant, particularly DIT2, suggesting that poor spore viability may be due to lysis of spores. Our results reveal specific functional differences between the two catalytic PKA subunits in A. gossypii and identified Tpk2 as the key A kinase that transduces developmental decisions of growth. Our data also suggest that Msn2/4 is involved only at a late step of sporulation in A. gossypii and is not a major regulator of IME1.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eremothecium/genética , Proteínas Fúngicas/metabolismo , Esporos/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Eremothecium/enzimologia , Eremothecium/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Deleção de Genes , Esporos/fisiologia
4.
Appl Microbiol Biotechnol ; 97(23): 10143-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24092010

RESUMO

The hemiascomycete Ashbya gossypii develops a mycelium. Nutritional stress leads to its differentiation into sporangia. These generate spores. In parallel, the yellow pigment riboflavin is produced. Intracellularly accumulated riboflavin, made visible as a bright green fluorescence, was observed in only 60% of the hyphal cells. For the remaining 40%, it was unclear whether these cells simply export riboflavin or its biosynthesis remains down-regulated in contrast to the accumulating cells. The approach followed in this work was to convert the hyphae into protoplasts by enzymatic degradation of the cell wall. Afterwards, the protoplasts were sorted by fluorescence-activated cell sorting on the basis of riboflavin accumulation. When a reporter strain expressing lacZ under the control of the most important riboflavin biosynthesis promoter, RIB3, was used, green protoplasts were found to have more than tenfold greater reporter activity than hyaline protoplasts. This was true on the basis of total protein as well as on the basis of hexokinase specific activity, a marker for constitutive expression. These results allow the conclusion that hyphal cells of A. gossypii differ in phenotype regarding riboflavin overproduction and accumulation.


Assuntos
Eremothecium/metabolismo , Hifas/crescimento & desenvolvimento , Riboflavina/biossíntese , Eremothecium/genética , Eremothecium/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hifas/genética , Hifas/metabolismo , Regiões Promotoras Genéticas , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
5.
Microbiol Res ; 168(10): 607-14, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23850207

RESUMO

Fungal cells are exposed to rapidly changing environmental conditions, in particular with regard to the osmotic potential. This requires constant remodeling of the cell wall and, therefore, the cell wall integrity (CWI) MAP-kinase pathway plays a major role in shaping the fungal cell wall to protect from adverse external stresses. To provide a comprehensive functional analysis of the Ashbya gossypii CWI pathway we generated a set of ten deletion mutants in conserved components including the cell surface sensors AgWSC1 and AgMID2, a putative Rho1-guanine nucleotide exchange factor, AgTUS1, the protein kinase C, AgPKC1, the MAP-kinases AgBCK1, AgMKK1 and AgMPK1, and transcription factors known to be involved in CWI signaling AgRLM1, AgSWI4 and AgSWI6. Deletion of AgPKC1 shows a severe growth defect with frequent tip cell lysis. Deletion of components of the MAP-kinase module generates a pronounced colony lysis phenotype in older regions of the mycelium. Cytoplasmic leakage was assayed using alkaline phosphatase and ß-galactosidase release assays. This indicated that the lysis phenotypes of CWI pathway mutants may be useful to facilitate the isolation of riboflavin from A. gossypii. Remarkably, the Agwsc1 mutant showed a strong (up to 8-fold) increase of riboflavin in the growth medium compared to the parental strain.


Assuntos
Parede Celular/fisiologia , Eremothecium/fisiologia , Adaptação Fisiológica , Parede Celular/genética , Meios de Cultura/química , Eremothecium/genética , Eremothecium/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Riboflavina/metabolismo , Transdução de Sinais
6.
J Basic Microbiol ; 52(5): 582-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22143993

RESUMO

Colony radial growth rates and specific growth rates of three related Ashbya gossypii strains ATCC10895, IMI31268, MUCL29450 and an unrelated strain, CBS109.26, were measured on various carbon and nitrogen sources at pH 4.5 and pH 6.5 to elucidate physiological growth requirements and strain differences. All strains grew on yeast extract or ammonium as nitrogen sources, but not on nitrate. Substantial growth at pH 4.5 was observed only on complex medium. D-Glucose, glycerol and starch were utilised as carbon sources. Ethanol was produced during growth on glycerol. Conversion of xylose into xylitol demonstrates that the xylose reductase is active. Phenotypic differences between related strains were greater than expected. We demonstrate that A. gossypii utilizes ammonium as sole nitrogen source at pH 6.5, facilitating further physiological studies using chemically defined media in the future.


Assuntos
Carbono/metabolismo , Eremothecium/crescimento & desenvolvimento , Eremothecium/metabolismo , Nitrogênio/metabolismo , Fenótipo , Meios de Cultura/química , Eremothecium/genética , Etanol/metabolismo , Glicerol/metabolismo , Concentração de Íons de Hidrogênio , Xilitol/metabolismo , Xilose/metabolismo
7.
Eukaryot Cell ; 10(12): 1679-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21984708

RESUMO

In budding yeast, new sites of polarity are chosen with each cell cycle and polarization is transient. In filamentous fungi, sites of polarity persist for extended periods of growth and new polarity sites can be established while existing sites are maintained. How the polarity establishment machinery functions in these distinct growth forms found in fungi is still not well understood. We have examined the function of Axl2, a transmembrane bud site selection protein discovered in Saccharomyces cerevisiae, in the filamentous fungus Ashbya gossypii. A. gossypii does not divide by budding and instead exhibits persistent highly polarized growth, and multiple axes of polarity coexist in one cell. A. gossypii axl2Δ (Agaxl2Δ) cells have wavy hyphae, bulbous tips, and a high frequency of branch initiations that fail to elongate, indicative of a polarity maintenance defect. Mutant colonies also have significantly lower radial growth and hyphal tip elongation speeds than wild-type colonies, and Agaxl2Δ hyphae have depolarized actin patches. Consistent with a function in polarity, AgAxl2 localizes to hyphal tips, branches, and septin rings. Unlike S. cerevisiae Axl2, AgAxl2 contains a Mid2 homology domain and may function to sense or respond to environmental stress. In support of this idea, hyphae lacking AgAxl2 also display hypersensitivity to heat, osmotic, and cell wall stresses. Axl2 serves to integrate polarity establishment, polarity maintenance, and environmental stress response for optimal polarized growth in A. gossypii.


Assuntos
Polaridade Celular , Eremothecium/fisiologia , Proteínas Fúngicas/fisiologia , Hifas/fisiologia , Proteínas de Membrana/fisiologia , Estresse Fisiológico , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Parede Celular/metabolismo , Sequência Conservada , Endocitose , Eremothecium/citologia , Eremothecium/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Inativação de Genes , Hifas/citologia , Hifas/crescimento & desenvolvimento , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Morfogênese , Estrutura Terciária de Proteína , Transporte Proteico
8.
Mol Microbiol ; 80(5): 1276-95, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21615551

RESUMO

Formin proteins are nucleators of actin filaments and regulators of the microtubule cytoskeleton. As such, they play important roles in the development of yeast and other fungi. We show here that AgBnr2, a homologue of the ScBnr1 formin from the filamentous fungus Ashbya gossypii, localizes to the spindle pole body (SPB), the fungal analogue of the centrosome of metazoans. This protein plays an important role in the development of the typical needle-shaped spores of A. gossypii, as suggested by several findings. First, downregulation of AgBNR2 causes defects in sporangium formation and a decrease in the total spore number. Second, a fusion of AgBNR2 to GFP that is driven by the native AgBNR2 promoter is only visible in sporangia. Third, AgBnr2 interacts with a AgSpo21, a sporulation-specific component of the SPB. Furthermore, we provide evidence that AgBnr2 might nucleate actin cables, which are connected to SPBs during sporulation. Our findings add to our understanding of fungal sporulation, particularly the formation of spores with a complex, elongated morphology, and provide novel insights into formin function.


Assuntos
Actinas/metabolismo , Eremothecium/metabolismo , Proteínas Fúngicas/metabolismo , Fuso Acromático/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Actinas/genética , Eremothecium/genética , Eremothecium/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Fuso Acromático/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
9.
FEMS Yeast Res ; 11(5): 418-29, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21489136

RESUMO

The genome of Ashbya gossypii contains homologs of most of the genes that are part of the Saccharomyces cerevisiae pheromone-signal transduction cascade. However, we currently lack understanding of a potential sexual cycle for this pre-whole genome duplication hemiascomycete. The sequenced strain bears three identical copies encoding MATa. We show that the syntenic A. gossypii homolog of MFα1 (AFL062w) does not encode a mature α-factor peptide, but identified another gene, AAR163c, which encodes a candidate α-specific mating pheromone and is thus reannotated as AgMFα2. The expression of the AgSTE2α-factor receptor in an Scste2 S. cerevisiae MATa strain resulted in dosage-dependent growth arrest upon exposure to A. gossypiiα-factor, which indicated that the pheromone response was effectively coupled to the S. cerevisiae signal transduction cascade. Comparison of α-pheromones and α-pheromone receptors showed greater conservation between Eremothecium cymbalariae and S. cerevisiae than between A. gossypii and E. cymbalariae. We constructed A. gossypii strains deleted for the STE2 and STE3 pheromone receptors. These strains showed no phenotypic abnormalities and an ste2, ste3 double mutant is still able to sporulate. The deletion of STE12 as the downstream target of pheromone signalling, however, led to a hypersporulation phenotype.


Assuntos
Eremothecium/metabolismo , Proteínas Fúngicas/metabolismo , Feromônios/metabolismo , Receptores de Fator de Acasalamento/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Eremothecium/genética , Eremothecium/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Dados de Sequência Molecular , Feromônios/genética , Receptores de Fator de Acasalamento/genética , Receptores de Peptídeos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Alinhamento de Sequência , Deleção de Sequência , Esporos Fúngicos/crescimento & desenvolvimento , Fatores de Transcrição/genética , Transformação Genética
10.
Microbiol Res ; 166(3): 137-45, 2011 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-21237627

RESUMO

Ashbya gossypii has been an ideal system to study filamentous hyphal growth. Previously, we identified a link between polarized hyphal growth, the organization of the actin cytoskeleton and endocytosis with our analysis of the A. gossypii Wiskott-Aldrich Syndrome Protein (WASP)-homolog encoded by the AgWAL1 gene. Here, we studied the role of AgSAC6, encoding a fimbrin in polarized hyphal growth and endocytosis, and based on our functional analysis identified genetic interactions between AgSAC6 and AgWAL1. SAC6 mutants show severely reduced polarized growth. This growth phenotype is temperature dependent and sac6 spores do not germinate at elevated temperatures. Spores germinated at 30°C generate slow growing mycelia without displaying polarity establishment defects at the hyphal tip. Several phenotypic characteristics of sac6 hyphae resemble those found in wal1 mutants. First, tips of sac6 hyphae shifted to 37°C swell and produce subapical bulges. Second, actin patches are mislocalized subapically. And third, the rate of endocytotic uptake of the vital dye FM4-64 was reduced. This indicates that actin filament bundling, a conserved function of fimbrins, is required for fast polarized hyphal growth, polarity maintenance, and endocytosis in filamentous fungi.


Assuntos
Endocitose , Eremothecium/crescimento & desenvolvimento , Eremothecium/genética , Proteínas Fúngicas , Hifas , Glicoproteínas de Membrana , Proteínas dos Microfilamentos , Actinas , Citoesqueleto/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Temperatura Alta , Hifas/crescimento & desenvolvimento , Hifas/fisiologia , Hifas/ultraestrutura , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/isolamento & purificação , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/isolamento & purificação , Mutação , Micélio/crescimento & desenvolvimento , Micélio/fisiologia , Micélio/ultraestrutura , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Deleção de Sequência , Esporos Fúngicos/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/genética
11.
Curr Drug Discov Technol ; 6(3): 186-91, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19496752

RESUMO

Previous studies show that acetylsalicylic acid (aspirin) at low concentrations affects yeast sexual structure development in a similar fashion than oxygen depletion. This is ascribed to its anti-mitochondrial action. In this study, we report the same for other anti-inflammatory (i.e. ibuprofen, indomethacin, salicylic acid, benzoic acid) as well as anticancer (Lonidamine) drugs, also known for inhibiting mitochondrial activity in mammalian cells. This is shown by a unique yeast bio-assay, with the mitochondrion-dependent sexual structure, riboflavin production, and hyphal morphology of the yeast Eremothecium ashbyi serving as indicators. These drugs affect this yeast in a similar way as found under oxygen limitation conditions by inhibiting sexual structure development (most sensitive), riboflavin production, and yielding characteristically wrinkled and granular hyphae, presenting a unique "anoxic" morphological pattern for this yeast. Only drugs associated with anti-mitochondrial activity presented such a pattern. This bio-assay may find application in the screening for novel drugs from various sources with anti-mitochondrial actions.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Bioensaio/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Eremothecium/efeitos dos fármacos , Indazóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Eremothecium/citologia , Eremothecium/crescimento & desenvolvimento , Eremothecium/metabolismo , Oxigênio/metabolismo , Oxilipinas/metabolismo
12.
J Cell Sci ; 121(Pt 23): 3878-89, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18984630

RESUMO

We use the fungus Ashbya gossypii to investigate how its polar growth machinery is organized to achieve sustained hyphal growth. In slowly elongating hyphae exocyst, cell polarity and polarisome proteins permanently localize as cortical cap at hyphal tips, thus defining the zone of secretory vesicle fusion. In tenfold faster growing hyphae, this zone is only slightly enlarged demonstrating a capacity of hyphal growth zones to increase rates of vesicle processing to reach higher speeds. Concomitant with this increase, vesicles accumulate as spheroid associated with the tip cortex, indicating that a Spitzenkörper forms in fast hyphae. We also found spheroid-like accumulations for the exocyst components AgSec3, AgSec5, AgExo70 and the polarisome components AgSpa2, AgBni1 and AgPea2 (but not AgBud6 or cell polarity factors such as AgCdc42 or AgBem1). The localization of AgSpa2, AgPea2 and AgBni1 depend on each other but only marginally on AgBud6, as concluded from a set of deletions. Our data define three conditions to achieve fast growth at hyphal tips: permanent presence of the polarity machinery in a confined cortical area, organized accumulation of vesicles and a subset of polarity components close to this area, and spatial separation of the zones of exocytosis (tip front) and endocytosis (tip rim).


Assuntos
Eremothecium/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento , Polaridade Celular , Eremothecium/metabolismo , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Hifas/ultraestrutura
13.
Microbiol Res ; 163(6): 701-10, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18809304

RESUMO

The Candida albicans genome encodes four chitinases, CHT1, CHT2, CHT3 and CHT4. All four C. albicans chitinase-encoding genes are non-essential. The corresponding proteins belong to two groups in which Cht1, Cht2 and Cht3 are more similar to Saccharomyces cerevisiae Cts1, while Cht4 is more similar to ScCts2. In the filamentous fungus Ashbya gossypii, a CTS2 homolog (ACL166w) was identified as the sole chitinase gene. The AgCts2 is 490 aa in Length and shows 42.3% overall identity to ScCts2 (511 aa) and 33.2% identity to CaCht4 (388 aa). The A. gossypii cts2 deletion mutant showed no growth retardation or vegetative morphogenetic defects. However, upon sporulation Agcts2 mutants revealed a defect in spore formation. Expression of AgCts2 using a lacZ reporter gene was only found in the centre of a mycelium corresponding to the sporogenous part of a colony. The mutant spore phenotype of Agcts2 could be complemented by either AgCTS2, the S. cerevisiae CTS2, or the C. albicans CHT4 gene when expressed by either the AgCTS2 or the AgTEF1 promoter.


Assuntos
Candida albicans/enzimologia , Quitinases/metabolismo , Eremothecium/enzimologia , Eremothecium/fisiologia , Mutação , Esporos Fúngicos/enzimologia , Candida albicans/genética , Quitinases/genética , Eremothecium/genética , Eremothecium/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Regiões Promotoras Genéticas , Esporos Fúngicos/fisiologia , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...